Electrowetting on superhydrophobic SU-8 patterned surfaces
نویسندگان
چکیده
منابع مشابه
Electrowetting-induced dewetting transitions on superhydrophobic surfaces.
We develop and demonstrate the use of electrowetting to achieve the dewetting (Wenzel-to-Cassie transition) of superhydrophobic surfaces. We effect this transition by means of an opposing flat plate and a three-electrode system; the liquid droplet is completely pulled out of its wetted Wenzel state upon the application of a suitable voltage. We also experimentally quantify the dissipative force...
متن کاملDroplet Shapes on Superhydrophobic Surfaces under Electrowetting Actuation
Droplet behavior on structured surfaces has recently generated a lot of interest due to its application to selfcleaning surfaces and in microfluidic devices. In this paper, the droplet shape and the droplet state on superhydrophobic surfaces are predicted using the Volume of Fluid (VOF) approach. Various structured surfaces are considered and the apparent contact angles are extracted from the p...
متن کاملElectrowetting on Superhydrophobic Surfaces: Present Status and Prospects
Electrowetting devices with an initial superhydrophobic water contact angle (>150◦) have now been demonstrated on a variety of structured substrates. These substrates are more complex than a conventional superhydrophobic surface since electrowetting requires an electrical conductor that is coated with a highperformance dielectric and a hydrophobic fluoropolymer. Substrate structures that have b...
متن کاملTowards optimization of patterned superhydrophobic surfaces.
Experimental and theoretical study of wetting properties of patterned Si surfaces with cylindrical flat-top pillars of various sizes and pitch distances is presented. The values of the contact angle (CA), contact angle hysteresis (CAH) and tilt angle (TA) are measured and compared with the theoretical values. Transition from the composite solid-liquid-air to the homogeneous solid-liquid interfa...
متن کاملDrag reduction on laser-patterned hierarchical superhydrophobic surfaces.
Hierarchical laser-patterned surfaces were tested for their drag reduction abilities. A tertiary level of surface roughness which supports stable Cassie wetting was achieved on the patterned copper samples by laser-scanning multiple times. The laser-fabricated micro/nano structures sustained the shear stress in liquid flow. A rheometer setup was used to measure the drag reduction abilities in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors and Actuators A: Physical
سال: 2006
ISSN: 0924-4247
DOI: 10.1016/j.sna.2005.12.018